SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code:DC (19EC0415) Year & Sem: III-B.Tech& I-Sem Course & Branch: B. Tech& ECE Regulation: R19

<u>UNIT –I</u>

Introduction & Source Coding Systems

1.	a)	Explain the DPCM system with neat diagram?	[L2] [CO1] [8M]	
	b)	What are the advantages & disadvantages of DPCM?	[L1] [CO1] [4M]	
2.	a)	Compare PCM, DPCM, and DM?	[L2] [CO1] [8M]	
	b)	List the Advantages of DM	[L1] [CO1][4M]	
3.	a)	Explain the delta modulation system with suitable diagrams?	[L2] [CO1][8M]	
	b)	Explain Slope overload Distortion & Granular Noise?	[L2] [CO1] [4M]	
4.	a)	With a neat block diagram explain PCM transmitter and receiver?	[L2] [CO1][8M]	
	b)	What are the advantages & disadvantages of PCM?	[L1] [CO1] [4M]	
5.	a)	Discuss the Noise considerations in PCM systems?	[L2] [CO1][6M]	
	b)	Draw and explain the block diagram of regenerative repeaters?	[L1] [CO1][6M]	
6.	a)	Derive the quantization noise in PCM?	[L3] [CO1][6M]	
	b)	Derive the S/N ratio of PCM?	[L3] [CO1] [6M]	
7.	a)	State sampling theorem.	[L1] [CO1][6M]	
	b)	Consider an audio signal consisting of the sinusoidal term given as	[L3] [CO1][6M]	
		$x(t) = 3\cos(500\pi t)$		
		i) Determine the SNR noise ratio. When this is quantized using 10 bits PCM.		
•	,	ii) How many bits of quantization are needed to achieve a SNR ratio of at least 40dB?		
8.	a)	Explain the Process of Quantization through one Example?	[L2] [CO1][6M]	
•	b)	Discuss the different types of Quantization in Detail?	[L2] [CO1][6M]	
9.	a)	Draw the block diagram of digital communication system? Explain each block?	[L1] [CO1][6M]	
	b)	A Television signal having a bandwidth of 4.2 MHz is transmitted using binary	[L3] [CO1][6M]	
		PCM system. Given that the number of quantization levels is 512. Determine		
		1) Codeword length? 11) I ransmission Bandwidth?		
10	a)	III) FINAL BIL FALE? IV) OUTPUT SINK FATIO?		
10.	a) b)	Explain fundamental limitations of Communication Systems		
	U)	Compare Analog and Digital Communication	[L2] [CO1][6M]	

QUESTION BANK 2021

<u>UNIT –II</u>

BASEBAND PULSE TRANSMISSION

1.	a)	Explain the matched filter.	[L2] [CO2][6M]
	b)	Derive the properties of matched filter.	[L3] [CO2]6M]
2.		Explain in detail about Inter symbol interference and its effects?	[L2] [CO2][12M]
3.	a)	Describe the baseband M-array PAM Transmission system.	[L1] [CO2][6M]
	b)	Explain in detail about modified duo binary signaling scheme?	[L2] [CO2][6M]
4.	a)	What is ISI? Draw the basic block diagram of baseband binary data	
		transmission	[L1] [CO2][6M]
_	b)	Explain the rectangular pulse for a matched filter?	[L2] [CO2][6M]
5.		Derive the expression for the Nyquist criterion for distortion less baseband	[L3] [CO2][12M]
		domain & Frequency	
6	a)	Derive the expression for impulse response of a matched filter	[I 3] [CO2][6M]
0.	h)	What are the remedies to reduce ISI	[L3] [CO2][0M]
7	0)	A polar NRZ waveform has to be received into the help of a matched filter	[L3] [CO2][0M]
		Here binary '1' is represented as a rectangular positive pulse. Also, binary '0'	
		is represented by a rectangular negative pulse. determine the impulse response	
		of the matched filter. Also sketch it.	
8.		What is correlative coding? Explain its types.	[L2] [CO2][12M]
9.	a)	What are the effects of ISI?	[L1] [CO2][6M]
	b)	Describe Eye pattern and construct the diagram.	[L2] [CO2][6M]
10.		Explain duo-binary signaling scheme through one example.	[L2] [CO2][12M]
		<u>UNIT –III</u>	
		Signal Space Analysis	
1.	a)	What is Gram-Schmidt orthogonalization procedure? Explain	[L1] [CO3] [6M]
	b)	Discuss about signal constellation diagram.	[L2] [CO3] [6M]
2.		Describe the concept of continuous AWGN channel into a vector channel.	[L2] [CO3][10M]
3.		Consider the signals $s_1(t)$, $s_2(t)$, $s_3(t)$, $s_4(t)$, shown in fig. Find the orthogonal	
		basis function using Gram Schmidt orthogonalization procedure	[L3] [CO3] [10M]
		$s_1(t) = s_2(t) = s_2(t) = s_4(t)$	
		$0 \frac{r}{3}$ $0 \frac{2r}{3}$ $0 \frac{r}{3}$	
4.		Draw the block diagram of the structure and behavior of Matched filter	
		Receiver?	[L1] [CO3] [12M]
5.	a)	Explain the concept of Schwarz Inequality	[L2] [CO3][6M]
	b)	Explain signal representation of a signal N=2and M=3.	[L2] [CO3][6M]
6.	a)	What is the concept of orthogonal basis function?	[L1] [CO3][6M]
	b)	Explain the Orthogonality basis function.	[L2] [CO3][6M]

			QUESTION BANK	2021
7.	a)	Draw the block diagram of a most basic form of digital communi	ication	
		system.	[L1]	[CO3][6M]
	b)	Illustrate optimum receiver for AWGN channel?	[L2]	[CO3][6M]
8.	a)	a) Sketch the signal constellation diagrams for N=M=2	[L3]	[CO3][6M]
	b)	b) Explain the geometrical representation of signals.	[L2]	[CO3][6M]
9.		Explain the following	[L2]	[CO3][12M]
		i) Additive White Gaussian noise? ii) Orthogonality?		
		iii) Signal vector? iv) Synthesizer?		
10.	a)	Explain the concept of AWGN channel.	[L2]	[CO3] [6M]
	b)	With a neat sketch explain the working of correlation receiver.	[L2]	[CO3][6M]
		<u>UNIT –IV</u>		
		Passband Data Transmission		
1.	a)	Compare all the digital modulation techniques	[L2]	[CO4][6M]
	b)	Derive the probability of error for a coherent QPSK system	[L3]	[CO4][6M]
2.	a)	Sketch with a neat diagram of M-array PSK transmitter and received	iver [L3]	[CO4][6M]
	b)	What are the parameters you can consider to choose the modulat	ion [L1]	[CO4] [6M]
2	-)	techniques	-1-' 1	[00.][0]
з.	a)	operation	[L1]	[CO4] [6M]
	b)	Derive an expression for probability of error in BFSK	[L3]	[CO4] [6M]
4.	a)	Derive an expression for probability of error of coherent binary A	ASK? [L3]	[CO4] [6M]
	b)	What is Bandwidth of BPSK, BFSK?	[L1]	[CO4][6M]
5.	a)	Derive the expression for probability of error for BPSK.	[L3]	[CO4] [6M]
	b)	How will you differentiate binary PSK and M-PSK, explain with	block [12]	[CO4] [6M]
		diagrams?		
6.	a)	Illustrate the pass band transmission model with neat diagram?	[L3]	[CO4] [6M]
_	b)	Explain pass band transmission with band pass transmission	[L2]	[CO4][6M]
7.	a)	Describe the generation and detection of DPSK	[L2]	[CO4][6M]
	D)	A binary data stream 101101100 is to be transmitted using DPSK	K. [L3]	[CO4][6M]
Ø		Determine the encoded and decoded output.	lain aaah	
ð.		block in detail	[L1]	[CO4] [12M]
9.	a)	Explain coherent digital modulation technique?	[L1]	[CO4] [4M]
	b)	i) What is meant by DPSK?	[L1]	[CO4][2M]
		ii) What are all the significance of BPSK?	[L3]	[CO4][3M]
		iii) Distinguish between QPSK and BPSK?	[L4]	[CO4][3M]
10.	a)	Describe the generation and detection of BPSK	[L2]	[CO4][6M]
	b)	Discuss in brief about coherent detection of binary FSK	[L2]	[CO4][6M]
		•	-	

QUESTION BANK 2021

<u>UNIT –V</u>

Channel Coding

1.		A generator matrix for a (6, 3) block code is given below	
		$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$	
	رد	Lo 0 1 1 1 0 List all the code vectors	U 11CO51[6M]
	a) h)	Find out minimum distance & weight of the code.	[L][COJ[0M] [L3][CO5][3M]
	c)	How many errors can be detected & corrected?	[L2][CO5][3M]
2.	a)	Explain the concept of matrix representation of Linear block codes.	[L2][CO5][6M]
	b)	Describe the Error detection and correction codes.	[L2][CO5][6M]
3.	a)	What are the types of parity check codes explain with neat diagrams?	[L1][CO5][6M]
	b)	Explain the concept of Parity check matrix for linear block codes.	[L2][CO5][6M]
4.		The parity check matrix for a $(7, 4)$ block code is given below	
		$\begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$	
	a)	Find the generator matrix (G).	[L3][CO5][6M]
Ę	b)	List all the code vectors.	[L1][CO5][6M]
э.	a) ->	What is forward error correction system and explain in detail?	
6.	D) 2)	Describe the matrix representation of finear block cours:	
υ.	aj	List out the various types of ARO systems.	
	b)	List out the various types of Ante systems.	[L1][CO5][6M]
7.		The Generator matrix(G) for a (7, 4) block code is given below $ \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} $	
	a)	Determine the Parity check matrix (G).	[L3][CO5][6M]
	b)	Find code vectors for any eight messages.	[L3][CO5][6M]
8.	a)	Explain the Convolutional Encoding and Decoding methods.	[L2][CO5][6M]
	b)	Discuss in brief about sequential decoding of convolutional codes.	[L2][CO5][6M]
9.		For a systematic (7, 4) linear block code the sub matrix 'P' is given as	[L5][CO5] [12M]
		$P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ Detect & correct the error using syndrome vector for the given code vectors	
		$Y_A = [0111110] Y_B = [1011100]C) Y_C = [1010000]$	
10		Define the following terms	
		i) Code efficiencyii) Hamming Distanceii) Code vectorsiv)Constraint length.	[L1][CO5] [12M]
DIGITAL COMMUNICATIONS Prepared By: Dr.K. GUNASEKARAN R. LEELAVATHI Page 4			

QUESTION BANK	2021

DIGITAL COMMUNICATIONS